Nuclear Structure from Gamma-Ray Spectroscopy

2019 Postgraduate Lectures

Lecture 4: Collective Nuclear Rotation

11/20/2018

Moment of Inertia

- Deformation provides an element of anisotropy allowing the definition of a nuclear orientation and the possibility of observing rotation
- Classically the energy associated with rotation is: $E_{rot} = \frac{1}{2} \Im \omega^2 = I^2 / 2 \Im ; \omega = I / \Im$
- Collective rotation involves the coherent contributions from many nucleons and gives rise to a smooth relation between energy and spin:

which defines the 'static' moment of inertia, sometimes denoted $\mathfrak{I}^{(0)}$

11/20/2018

Energy Levels of a Rotor

 6^{+}

 4^{+}

 2^{+}

- The energy levels of a rotor are proportional to I(I+1)
 - The ratios of energy levels for a rotor are:

E(4⁺)/E(2⁺) = 3.333

 $E(6^+)/E(2^+) = 7.0$

Rotational Frequency

The rotational frequency $\boldsymbol{\omega}$ is distinct from the oscillator quantum $\boldsymbol{\omega}_0$. In practice $\boldsymbol{\omega} \ll \boldsymbol{\omega}_0$ and the collective rotation can be considered as an adiabatic motion

Rigid Body Moment of Inertia

The rigid-body moment of inertia for a spherical nucleus is:

 $\Im_{rig} = (2/5) MR^2 = (2/5) A^{5/3} m_N r_0^2$ where m_N is the mass of a nucleon (M = A m_N) and R = r_0 A^{1/3} with $r_0 = 1.2$ fm

• For a deformed nucleus: $\sim -(2/5) 4^{5/3} m n^{2} \Gamma$

 \Im_{rig} = (2/5) $A^{5/3}$ m_N r₀² [1 + 1/3 δ] where δ = ΔR / R₀

Typically nuclear moments of inertia are less than 50% of the rigid-body value at low spin

Nuclear Moments of Inertia

Nuclear moments of inertia are lower than the rigid-body value - a consequence of nuclear pairing

Nuclear Physics Postgraduate Lectures : E.S. Paul

Nuclear Rotation

The assumption of the ideal flow of an incompressible nonviscous fluid (Liquid Drop Model) leads to a hydrodynamic moment of inertia (surface waves):

Rigid body

Nucleus

- This estimate is much too low !
- We require short-range pairing correlations to account for the experimental values

Kinematic and Dynamic MoI's

Assuming maximum alignment on the x-axis ($I_x \sim I$), the kinematic moment of inertia is defined:

$$\Im^{(1)} = (\hbar^2 I) [dE(I)/dI]^{-1} = \hbar I/\omega$$

 The dynamic moment of inertia (response of system to a force) is:

 $\Im^{(2)} = (\hbar^2) [d^2 E(I)/dI^2]^{-1} = \hbar dI/dw$

- Note that $\Im^{(2)} = \Im^{(1)} + \omega \, d\Im^{(1)} / d\omega$
- Rigid body: $\mathfrak{I}^{(1)} = \mathfrak{I}^{(2)}$ Nucleus at high spin: $\mathfrak{I}^{(1)} \approx \mathfrak{I}^{(2)}$

11/20/2018

General Rotation

• A deformed rotor has a Hamiltonian of the form:

$$H_{rot} = \Sigma_k A_k R_k^2$$
, $A_k = \hbar^2 / 2\Im_k$

where \Im_k is the moment of inertia about the k^{th} axis

For <u>triaxial</u> shapes the moments of inertia are:

$$\Im_{k} = (4/3) \Im_{0} \sin^{2} [\gamma + k 2\pi/3]$$

• For an <u>axial</u> nucleus deformed along the z-axis, $\Im_1 = \Im_2 = \Im_0$ and $\Im_3 = 0$, and the Hamiltonian is:

$$H_{rot} = (\hbar^2/2\Im_0) [R_1^2 + R_2^2] = (\hbar^2/2\Im_0) \underline{R}^2$$

Irrotational Moments of Inertia

- This diagram shows the variation of the moments of inertia \Im_k as a function of the triaxiality parameter y
- For a prolate nuclear shape ($\gamma = 0^{\circ}$), $\Im_1 = \Im_2$ and $\Im_3 = 0$
- For $\gamma = 30^\circ$, \Im_2 reaches a maximum and this represents the 'most collective' shape

Angular Momentum Coupling

 Provided that the collective rotation is slow relative to the single-particle motion (adiabatic condition), the nuclear Hamiltonian can be separated into intrinsic and rotational parts:

 $H = H_{int} + H_{rot}$ with eigenvalues $\Psi = \Psi_{int}\Psi_{rot}$

• The intrinsic motion has angular momentum \underline{J} , which is not a conserved quantity. It couples to the collective rotation \underline{R} to give total spin:

 $\underline{I} = \underline{R} + \underline{J}$

 The total spin <u>I</u> is a <u>constant</u> of the motion together with its projection M

Various Spin Projections

Rotation Matrices

 The intrinsic wavefunction can be characterised by the K projection. The three variables I², M and K completely specify the state of motion The eigenfunctions are given by:

$$\Psi_{\rm rot} = |\mathbf{IMK}\rangle = \int [(2\mathbf{I} + 1)/8\pi^2] D_{\rm IMK}(\Theta, \varphi, \psi)$$

where the functions D_{IMK} are 'rotation matrices'

- Note: $\hat{I}^2 D_{IMK} = I(I+1)\hbar^2 D_{IMK}$; $\hat{I}_Z D_{IMK} = K\hbar D_{IMK}$ $\hat{I}_{\pm} D_{IMK} = \int [I(I+1) - K(K \neq 1)]\hbar D_{IMK \neq 1}$
- The rotational energy is:

 $(1/2\Im_x)(\hat{I}^2 - \hat{I}_z^2) \Psi_{rot}$ i.e.

$$E_{rot} = (\hbar^2/2\Im_x)[I(I+1) - K^2]$$

Signature Quantum Number 'r'

• For K = 0, the D_{IMK} functions reduce to spherical harmonics Y_{IM} and the nuclear wavefunction is:

 $\Psi_{\rm r,IMK=0} = (1/J2) \, \Psi_{\rm r,K=0} \, Y_{\rm IM}$

- The quantum number r is the 'signature', related to the invariance of the system when rotated 180° about an axis perpendicular to the symmetry axis (z): operator $R(\pi)$
- A second rotation by 180° brings the system back to its original orientation. Hence:

$$\mathsf{R}^{2}(\pi) \Psi_{r,\mathsf{IMK}} = r^{2} \Psi_{r,\mathsf{IMK}} = \Psi_{r,\mathsf{IMK}}$$

The allowed values of r are: (-1)^I

Bands of Good Signature

- For K = 0, we may classify rotational bands in terms of the signature quantum number
- For r = +1, the allowed spins are:
 I = 0, 2, 4,...
- For r = -1, the allowed spins are:
 I = 1, 3, 5,...
- Hence for each signature we obtain a rotational band with the energy levels separated by 2ħ

Rotational Bands with K ≠ O

For K ≠ 0, the total nuclear wavefunction takes the antisymmetrised form in order to satisfy the rotation (reflection) symmetry:

$$\Psi_{IMK} = \int [(2I+1)/16\pi^2] \{\Psi_K D_{IMK} + (-1)^{I+K} \Psi_{-K} D_{IM-K}\}$$

where Ψ_{-K} corresponds to a projection of the spin -K and is obtained by the operation $R(\pi) \Psi_{K}$

• The consequence of $R(\pi)$ invariance for $K \neq 0$ is that the intrinsic states Ψ_K and Ψ_{-K} , with eigenvalues $\pm K$ of J_z , are degenerate and constitute only a single sequence of states with spins:

I = K, K+1, K+2,...

i.e. states with alternating signature

11/20/2018

Particle-Rotor Coupling

- For an axially symmetric deformed rotor:
 - $H_{rot} = (\hbar^2/2\Im_0) \underline{R}^2 = (\hbar^2/2\Im_0) [\underline{I} \underline{J}]^2$

 $= (\hbar^2/2\Im_0) [\underline{I}.\underline{I} + \underline{J}.\underline{J} - 2\underline{I}.\underline{J}]$

where the \underline{I} , \underline{J} couples the degrees of freedom of the valence particles to the rotational motion and is analogous to the classical Coriolis and centrifugal forces

• Now consider J to consist of a single particle $(J \rightarrow j)$ coupled to an even-even core

 $H_{rot} = (\hbar^2/2\Im_0) \left[(I^2 - I_z^2) + (j^2 - j_z^2) - (I_+ j_- + I_- j_+) \right]$

The final term couples intrinsic and rotational states

11/20/2018

Particle-Rotor Coupling Schemes

- (a) shows the strong-coupling limit or deformationaligned (DAL) coupling scheme
- (b) shows the weak-coupling limit or rotation-aligned (RAL) coupling scheme

Strong Coupling (DAL)

- This limit is recognised when the level splitting of the deformed shell-model single-particle energies for different Ω values is <u>large</u> compared with the Coriolis perturbation, i.e. large deformation or small Coriolis matrix elements (low j, high Ω)
- The angular momentum vector j precesses around the deformation axis and K is approximately a good quantum number
- The energy spectrum is given by the set of levels:

$$E_{rot} = (\hbar^2/2\Im_0) [I(I+1) - K^2]$$

Decoupling Limit (RAL)

- For weakly deformed nuclei, or fast enough rotation, the Coriolis force may be so strong that the coupling of the valence nucleon to the deformed core is negligible
- The Coriolis force tends to align the nucleonic angular momentum j with that of the rotational angular momentum R
- In this limit, the rotation band has spins:
 I = j, j+2, j+4,...
- The energies are:

$$E_{rot} = (\hbar^2/2\Im_0) (I - j_x) (I - j_x + 1)$$

$K = \frac{1}{2}$ Bands in Odd-A Nuclei

• The rotational energy of a $K = \frac{1}{2}$ band is:

$$\mathsf{E}(\mathbf{I}) = (\hbar^2/2\mathfrak{I}_0) \left[\mathbf{I}(\mathbf{I}+1) + \mathfrak{a}(-1)^{\mathbf{I}+\frac{1}{2}}(\mathbf{I}+\frac{1}{2}) \right]$$

where **a** is the decoupling parameter

• Bands can \underline{mix} if $\Delta K = \pm 1$

• For $K = \frac{1}{2}$ bands there is a diagonal matrix element of the form: $\langle K = \frac{1}{2} | j_+ | K = -\frac{1}{2} \rangle$ where $j_+ = j_x + i j_y$ which perturbs the energy

High K (I_z) Bands

 $K = I_z = \sum j_z = \sum \Omega$

If we have many paired nucleons outside the closed shell in the ground state then alignment with the xaxis becomes difficult because the valence nucleons lie closer to the z-axis, i.e. they have high Ω values

 The sum K of these projections onto the deformation (z) axis is now a good quantum number

K Forbidden Transitions

- It is difficult for rotational bands with high K values to decay to bands with smaller K since the nucleus has to change the orientation of its angular momentum.
- For example, the $K^{\pi} = 8^{-}$ band head in ¹⁷⁸Hf is isomeric with a lifetime of 4 s. This is much longer than the lifetimes of the rotational states built on it.
- The Kⁿ = 8⁻ band head is formed by breaking a pair of protons and placing them in the 'Nilsson configurations':

 Ω [N n₃ Λ] = 7/2 [4 0 4] and 9/2 [5 1 4]

• In this case: K = 7/2 + 9/2 = 8 and $\pi = (-1)^{N(1)} \cdot (-1)^{N(2)} = -1$

K Isomers in ¹⁷⁸Hf

- A low lying state with spin I = 16 and K = 16 in ¹⁷⁸Hf is isomeric with a half life of 31 years !
- It is <u>yrast</u> (lowest state for a given spin) and is 'trapped' since it must change K by 8 units in its decay

K Forbiddenness

- Strictly, in the decay of a high-K band-head, K can only change by an amount up to the multipolarity A of the transition
- The 'degree of K forbiddenness' is: $v = |\Delta K| - \lambda$
- The 'hindrance factor' is: $f = F_W = T_{1/2}^{\gamma} / T_{1/2}^{W}$ where $T_{1/2}^{\gamma}$ is the partial γ -ray half-life and $T_{1/2}^{W}$ is the theoretical Weisskopf estimate
- The 'reduced hindrance factor' is: $f_v = f^{1/v} = [T_{1/2}^v / T_{1/2}^W]^{1/v}$

Hindrance Factors

• The solid line shows the dependence of F_W on ΔK for some E1 transitions according to an empirical rule: $\log F_W = 2\{|\Delta K| - \Lambda\}$ = 2v

 i.e. F_W values increase approximately by a factor of 100 per degree of K forbiddenness

Nuclear Wobbling

- This type of rotation is predicted to only occur in triaxially deformed nuclei
- The nucleus rotates around the principal axis having the largest moment of inertia and this axis executes harmonic oscillations about the space-fixed angular momentum vector
- Its analogue in classic mechanics is an asymmetric spinning top
- Precession of the Earth

Wobbling Motion and Triaxiality

- <u>Wobbling</u> is a fundamental mode due to triaxiality which occurs when the axis of collective rotation does not coincide with one of the principal axes
- For a deformed rotor the Hamiltonian is:

 $H_{rot} = (\hbar^{2}/2\Im_{x}) I_{x}^{2} + (\hbar^{2}/2\Im_{y}) I_{y}^{2} + (\hbar^{2}/2\Im_{z}) I_{z}^{2}$

• For a well-deformed but triaxial nucleus with $\Im_x \gg \Im_y \neq \Im_z$ the energy of the wobbling rotor is:

$$E(I,n_W) = (\hbar^2/2\Im_x) I(I+1) + \hbar w_W(I) (n_W + \frac{1}{2})$$

where n_W is the number of wobbling phonons and ω_W is the wobbling frequency

11/20/2018

Wobbling Frequency

 The wobbling frequency is related to the rotational frequency as:

- Note for an axially symmetric prolate nucleus, \Im_z goes to zero and $w_W \rightarrow \infty$, i.e. there is no wobbling motion
- A family of wobbling bands is expected for $n_W = 0, 1, 2,...$

Wobbling Motion

Wobbling Bands in ¹⁶⁵Lu

- A family of wobbling bands is expected to show very similar internal structure
- TSD (Triaxial SuperDeformed) bands

 2 and 3 in ¹⁶⁵Lu represent bands with 0, 1 and 2 wobbling phonons, respectively

Electromagnetic Properties

• A characteristic signature of wobbling motion is the occurrence of $\Delta I = \pm 1$ interband transitions with unusually large B(E2)_{out} values that compete with the strong $\Delta I = 2$ inband transitions, B(E2)_{in}

An_W = 2 transitions are forbidden

• Measured multipole mixing ratios for the interband $\Delta I = 1$ transitions in ¹⁶⁵Lu show them to be ~90% E2 and only ~10% M1 !

11/20/2018

¹⁰⁵Pd: Transverse Wobbler

- Precise measurements of angular distributions and linear polarisations in ¹⁰⁵Pd have also pointed to $\Delta I = 1$ interlinking transitions with predominantly E2 (non-stretched) character
- The angular momentum of the odd neutron $(h_{11/2})$ is perpendicular to the wobbling axis
- Hence the name transverse wobbler!