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Nuclear Structure from 
Gamma-Ray Spectroscopy 

2019 Postgraduate Lectures 

Lecture 4: Collective Nuclear Rotation 
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 Deformation provides an element of anisotropy allowing 
the definition of a nuclear orientation  and the possibility 
of observing rotation 
 

 Classically the energy associated with rotation is:  
                 Erot = ½  ω2 = I2 / 2   ;  ω = I /   
 
 Collective rotation involves the coherent contributions 

from many nucleons and gives rise to a smooth relation 
between energy and spin:  
 

                             E = (ħ2/2) I[I + 1]  
 
    which defines the ‘static’ moment of inertia, sometimes 

denoted (0)  

Moment of Inertia 
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Energy Levels of a Rotor 

 The energy levels of a rotor 
are proportional to I(I+1) 

 

 The ratios of energy levels 
for a rotor are:     

 

       E(4+)/E(2+) = 3.333  

 

       E(6+)/E(2+) = 7.0 
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Rotational Frequency 
 The intensive variable ω 

(rotation about the x axis)   
is related to the extensive 
variable I by the relation: 

       ħω = dE/dIx  

                  ≈ ½[E(I+1) – E(I-1) 
 Here Ix is the projection of I 

onto the rotation axis (x): 
 

        Ix = √[I(I+1)-K2] ħ 

The rotational frequency ω is distinct from the oscillator 
quantum ω0. In practice ω « ω0 and the collective 
rotation can be considered as an adiabatic motion 
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Rigid Body Moment of Inertia 
 The rigid-body moment of inertia for a spherical nucleus 

is:  

            rig = (2/5) MR2 = (2/5) A5/3 mN r0
2  

   where mN is the mass of a nucleon (M = A mN) and   

             R = r0 A1/3    with   r0 = 1.2 fm 

 

 For a deformed nucleus:  

            rig
 = (2/5) A5/3 mN r0

2 [1 + 1/3 δ]  

    where δ = ΔR / R0 

 

 Typically nuclear moments of inertia are less than 50% 
of the rigid-body value at low spin 
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Nuclear Moments of Inertia 

 Nuclear 
moments of 
inertia are 
lower than the 
rigid-body 
value – a 
consequence 
of nuclear 
pairing 
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Nuclear Rotation 

 The assumption of the ideal flow 
of an incompressible nonviscous 
fluid (Liquid Drop Model) leads 
to a hydrodynamic moment of 
inertia (surface waves): 

             hydro = rig δ2 

 

 This estimate is much too low ! 

 

 We require short-range pairing 
correlations to account for the 
experimental values 



 Assuming maximum alignment on the 
x-axis (Ix ~ I), the kinematic moment 
of inertia is defined:  

 

    (1) = (ħ2I) [dE(I)/dI]-1 = ħ I/ω 

 

 The dynamic moment of inertia 
(response of system to a force) is: 

 

    (2) = (ħ2) [d2E(I)/dI2]-1 = ħ dI/dω 

11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul 8 

Kinematic and Dynamic MoI’s 

 Note that   (2) = (1) + ω d(1)/dω 

 Rigid body: (1) = (2)  Nucleus at high spin: (1) ≈ (2) 
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General Rotation 
 A deformed rotor has a Hamiltonian of the form:  

 
              Hrot = Σk AkRk

2   ,   Ak = ħ2/2k  
 
    where k is the moment of inertia about the kth axis 
 
 For triaxial shapes the moments of inertia are:  

 
              k  = (4/3) 0 sin2 [γ + k 2π/3 ] 
 
 For an axial nucleus deformed along the z-axis,  
    1 = 2 = 0 and  3

 = 0, and the Hamiltonian is:  
 
              Hrot = (ħ2/20) [R1

2 + R2
2]  =  (ħ2/20)  R2
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Irrotational Moments of Inertia 
 This diagram shows 

the variation of the 
moments of inertia k  
as a function of the 
triaxiality parameter γ 
 

 For a prolate nuclear 
shape (γ = 0°), 1 = 2 
and  3

 = 0 
 

 For γ = 30°, 2 reaches    
a maximum and this 
represents the ‘most 
collective’ shape 
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Angular Momentum Coupling 
 Provided that the collective rotation is slow relative to 

the single-particle motion (adiabatic condition), the 
nuclear Hamiltonian can be separated into intrinsic and 
rotational parts:  

        H = Hint + Hrot   with eigenvalues    Ψ = ΨintΨrot 

 

 The intrinsic motion has angular momentum J, which is 
not a conserved quantity. It couples to the collective 
rotation R to give total spin:  

         I = R + J 

 

 The total spin I is a constant of the motion together 
with its projection M 
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Various Spin Projections 



 The intrinsic wavefunction can be characterised by the  
K projection. The three variables I2, M  and K completely 
specify the state of motion The eigenfunctions are given  

    by:  
              Ψrot = |IMK  = √[(2I +1)/8π2] DIMK (θ,φ,ψ)  
     
    where the functions DIMK are ‘rotation matrices’ 
 
 Note:       Î2 DIMK = I(I+1)ħ2 DIMK   ;   ÎZ DIMK = Kħ DIMK  

                    
                    Î± DIMK = √[I(I+1) – K(K 1)]ħ DIMK 1 
 
 The rotational energy is: 

 
       (1/2x)(Î2 – Îz

2) Ψrot   i.e.    Erot = (ħ2/2x)[I(I+1) – K2] 
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Rotation Matrices 
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Signature Quantum Number ‘r’ 
 For K = 0, the DIMK functions reduce to spherical 

harmonics YIM and the nuclear wavefunction is:    
                   
                      Ψr,IMK=0 = (1/√2) Ψr,K=0 YIM 

 
 The quantum number r is the ‘signature’, related to the 

invariance of the system when rotated 180° about an axis 
perpendicular to the symmetry axis (z): operator R(π) 
 

 A second rotation by 180° brings the system back to its 
original orientation. Hence:  
 

                     R2(π) Ψr,IMK = r2 Ψr,IMK = Ψr,IMK  
 
 The allowed values of r are: (-1)I 
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Bands of Good Signature 

 For K = 0, we may classify rotational bands in terms of 
the signature quantum number 

 

 For r = +1, the allowed spins are: 

                       I = 0, 2, 4,… 

 

 For r = -1, the allowed spins are: 

                       I = 1, 3, 5,… 

 

 Hence for each signature we obtain a rotational band 
with the energy levels separated by 2ħ 
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 For K ≠ 0, the total nuclear wavefunction takes the 
antisymmetrised form in order to satisfy the rotation 
(reflection) symmetry:  
 

           ΨIMK = √[(2I+1)/16π2] {ΨK DIMK + (-1)I+K Ψ-K DIM-K }  
 
    where Ψ-K corresponds to a projection of the spin  –K and 

is obtained by the operation R(π) ΨK  
 
 The consequence of R(π) invariance for K ≠ 0 is that the 

intrinsic states ΨK and Ψ-K, with eigenvalues ±K of Jz, are 
degenerate and constitute only a single sequence of 
states with spins:  

             I = K, K+1, K+2,…  
   i.e. states with alternating signature 

Rotational Bands with K ≠ 0 
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Particle-Rotor Coupling 
 For an axially symmetric deformed rotor:  

 
     Hrot = (ħ2/20) R2  = (ħ2/20) [I – J]2  
 

                                  = (ħ2/20) [I.I + J.J -2I.J] 
 
    where the I.J couples the degrees of freedom of the 

valence particles to the rotational motion and is  
analogous to the classical Coriolis and centrifugal forces 

 
 Now consider J to consist of a single particle  
    (J j) coupled to an even-even core 
 
        Hrot = (ħ2/20) [(I2 – Iz

2) + (j2 – jz
2) – (I+j- + I-j+)] 

 

    The final term couples intrinsic and rotational states 
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Particle-Rotor Coupling Schemes 

  (a) shows the strong-coupling limit or deformation- 
     aligned (DAL) coupling scheme 
  (b) shows the weak-coupling limit or rotation-aligned  
     (RAL) coupling scheme 
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Strong Coupling (DAL) 
 This limit is recognised when the level splitting of the 

deformed shell-model single-particle energies for 
different Ω values is large compared with the Coriolis 
perturbation, i.e. large deformation or small Coriolis 
matrix elements (low j, high Ω) 
 

 The angular momentum vector j precesses around the 
deformation axis and K is approximately a good quantum 
number 
 

 The energy spectrum is given by the set of levels:  
 

                       Erot = (ħ2/20) [I(I+1) – K2] 
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Decoupling Limit (RAL) 
 For weakly deformed nuclei, or fast enough rotation, the 

Coriolis force may be so strong that the coupling of the 
valence nucleon to the deformed core is negligible 

 

 The Coriolis force tends to align the nucleonic angular 
momentum j with that of the rotational angular 
momentum R 

 

 In this limit, the rotation band has spins:  

         I = j, j+2, j+4,… 

 

 The energies are:      Erot = (ħ2/20) (I - jx) (I – jx +1) 
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 The rotational energy of a K = ½ band is:  
 

               E(I) = (ħ2/20) [I(I+1) + a(-1)I+½(I+½)]  
 
    where a is the decoupling parameter 

K = ½ Bands in Odd-A Nuclei 

 Bands can mix if ΔK = ±1 

 

 For K = ½ bands there is a 
diagonal matrix element of  
the form:  K=½|j+| K=-½  

    where j+ = jx + ijy which 
perturbs the energy 
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High K (Iz) Bands 
 If we have many paired 

nucleons outside the closed 
shell in the ground state 
then alignment with the x-
axis becomes difficult 
because the valence 
nucleons lie closer to the  
z-axis, i.e. they have high  
Ω values 

 

 The sum K of these 
projections onto the 
deformation (z) axis is now 
a good quantum number 

K = Iz = jz = Ω 
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K Forbidden Transitions 
 It is difficult for rotational bands with high K values to 

decay to bands with smaller K since the nucleus has to 
change the orientation of its angular momentum.  
 

 For example, the Kπ = 8- band head in 178Hf is isomeric 
with a lifetime of 4 s.  This is much longer than the 
lifetimes of the rotational states built on it. 
 

 The Kπ = 8- band head is formed by breaking a pair of 
protons and placing them in the ‘Nilsson configurations’: 
 

         Ω [N n3 Λ] = 7/2 [4 0 4] and 9/2 [5 1 4] 
 
 In this case: K = 7/2 + 9/2 = 8 and π = (-1)N(1).(-1)N(2) = -1 
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K Isomers in 178Hf 
 A low lying state with 

spin I = 16 and K = 16 in 
178Hf is isomeric with a 
half life of 31 years ! 

 

 It is yrast (lowest state 
for a given spin) and is 
‘trapped’ since it must 
change K by 8 units in its 
decay 
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K Forbiddenness 
 Strictly, in the decay of a high-K band-head, K can only 

change by an amount up to the multipolarity λ of the 
transition 
 

 The ‘degree of K forbiddenness’ is:  
             ν = |ΔK| - λ 
 
 The ‘hindrance factor’ is:  
             f = FW = T1/2

γ / T1/2
W  

    where T1/2
γ is the partial γ-ray half-life and T1/2

W is the 
theoretical Weisskopf estimate 

 
 The ‘reduced hindrance factor’ is:  
             fν = f1/ν = [ T1/2

γ / T1/2
W ]1/ν 
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Hindrance Factors 
 The solid line shows 

the dependence of FW 

on ΔK for some E1 
transitions according 
to an empirical rule:   

      log FW = 2{|ΔK| - λ}  

                 = 2ν 

 

 i.e. FW values increase 
approximately by a 
factor of 100 per 
degree of K 
forbiddenness 



Nuclear Wobbling 

 This type of rotation is predicted to only occur in 
triaxially deformed nuclei 

 

 The nucleus rotates around the principal axis having the 
largest moment of inertia and this axis executes 
harmonic oscillations about the space-fixed angular 
momentum vector 

 

 Its analogue in classic mechanics is an asymmetric 
spinning top 

 

 Precession of the Earth 
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 Wobbling is a fundamental mode due to triaxiality which 
occurs when the axis of collective rotation  does not 
coincide with one of the principal axes 
 

 For a deformed rotor the Hamiltonian is:  
 

            Hrot = (ħ2/2x) Ix
2 + (ħ2/2y) Iy

2 + (ħ2/2z) Iz
2 

 
 For a well-deformed but triaxial nucleus with x » y ≠ z 

the energy of the wobbling rotor is: 
  
            E(I,nW) = (ħ2/2x) I(I+1) + ħωW(I) (nW + ½)  
 
   where nW is the number of wobbling phonons and ωW is  
   the wobbling frequency 

Wobbling Motion and Triaxiality 
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Wobbling Frequency 

 The wobbling frequency is related to the rotational 
frequency as:  

 

           ωW = ωrot√[ (x - y)(x - z) / (y z) ]  

with  

           ωrot = ħ I / x 

 

 Note for an axially symmetric prolate nucleus, z goes to 
zero and ωW  , i.e. there is no wobbling motion 

 

 A family of wobbling bands is expected for nW = 0, 1, 2,… 
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Wobbling Motion 
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Wobbling Bands in 165Lu 

 A family of wobbling 
bands is expected to 
show very similar 
internal structure 

 

 TSD (Triaxial 
SuperDeformed) bands 
1, 2 and 3 in 165Lu 
represent bands with 0, 
1 and 2 wobbling 
phonons, respectively 
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Electromagnetic Properties 
 A characteristic signature 

of wobbling motion is the 
occurrence of ΔI = ±1 
interband transitions with 
unusually large B(E2)out 

values that compete with 
the strong ΔI = 2 inband 
transitions, B(E2)in 

 

  ΔnW = 2 transitions are 
forbidden 

 Measured multipole mixing ratios for the interband  
ΔI = 1 transitions in 165Lu show them to be ~90% E2 
and only ~10% M1 ! 



105Pd: Transverse Wobbler 

 Precise measurements of angular distributions and linear 
polarisations in 105Pd have also pointed to ΔI = 1 
interlinking transitions with predominantly E2 (non-
stretched) character 

 

 The angular momentum of the odd neutron (h11/2)  is 
perpendicular to the wobbling axis 
 

 Hence the name transverse wobbler! 
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