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Nuclear Structure from 
Gamma-Ray Spectroscopy 

2019 Postgraduate Lectures 

Lecture 4: Collective Nuclear Rotation 
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 Deformation provides an element of anisotropy allowing 
the definition of a nuclear orientation  and the possibility 
of observing rotation 
 

 Classically the energy associated with rotation is:  
                 Erot = ½  ω2 = I2 / 2   ;  ω = I /   
 
 Collective rotation involves the coherent contributions 

from many nucleons and gives rise to a smooth relation 
between energy and spin:  
 

                             E = (ħ2/2) I[I + 1]  
 
    which defines the ‘static’ moment of inertia, sometimes 

denoted (0)  

Moment of Inertia 
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Energy Levels of a Rotor 

 The energy levels of a rotor 
are proportional to I(I+1) 

 

 The ratios of energy levels 
for a rotor are:     

 

       E(4+)/E(2+) = 3.333  

 

       E(6+)/E(2+) = 7.0 
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Rotational Frequency 
 The intensive variable ω 

(rotation about the x axis)   
is related to the extensive 
variable I by the relation: 

       ħω = dE/dIx  

                  ≈ ½[E(I+1) – E(I-1) 
 Here Ix is the projection of I 

onto the rotation axis (x): 
 

        Ix = √[I(I+1)-K2] ħ 

The rotational frequency ω is distinct from the oscillator 
quantum ω0. In practice ω « ω0 and the collective 
rotation can be considered as an adiabatic motion 
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Rigid Body Moment of Inertia 
 The rigid-body moment of inertia for a spherical nucleus 

is:  

            rig = (2/5) MR2 = (2/5) A5/3 mN r0
2  

   where mN is the mass of a nucleon (M = A mN) and   

             R = r0 A1/3    with   r0 = 1.2 fm 

 

 For a deformed nucleus:  

            rig
 = (2/5) A5/3 mN r0

2 [1 + 1/3 δ]  

    where δ = ΔR / R0 

 

 Typically nuclear moments of inertia are less than 50% 
of the rigid-body value at low spin 
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Nuclear Moments of Inertia 

 Nuclear 
moments of 
inertia are 
lower than the 
rigid-body 
value – a 
consequence 
of nuclear 
pairing 
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Nuclear Rotation 

 The assumption of the ideal flow 
of an incompressible nonviscous 
fluid (Liquid Drop Model) leads 
to a hydrodynamic moment of 
inertia (surface waves): 

             hydro = rig δ2 

 

 This estimate is much too low ! 

 

 We require short-range pairing 
correlations to account for the 
experimental values 



 Assuming maximum alignment on the 
x-axis (Ix ~ I), the kinematic moment 
of inertia is defined:  

 

    (1) = (ħ2I) [dE(I)/dI]-1 = ħ I/ω 

 

 The dynamic moment of inertia 
(response of system to a force) is: 

 

    (2) = (ħ2) [d2E(I)/dI2]-1 = ħ dI/dω 
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Kinematic and Dynamic MoI’s 

 Note that   (2) = (1) + ω d(1)/dω 

 Rigid body: (1) = (2)  Nucleus at high spin: (1) ≈ (2) 
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General Rotation 
 A deformed rotor has a Hamiltonian of the form:  

 
              Hrot = Σk AkRk

2   ,   Ak = ħ2/2k  
 
    where k is the moment of inertia about the kth axis 
 
 For triaxial shapes the moments of inertia are:  

 
              k  = (4/3) 0 sin2 [γ + k 2π/3 ] 
 
 For an axial nucleus deformed along the z-axis,  
    1 = 2 = 0 and  3

 = 0, and the Hamiltonian is:  
 
              Hrot = (ħ2/20) [R1

2 + R2
2]  =  (ħ2/20)  R2
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Irrotational Moments of Inertia 
 This diagram shows 

the variation of the 
moments of inertia k  
as a function of the 
triaxiality parameter γ 
 

 For a prolate nuclear 
shape (γ = 0°), 1 = 2 
and  3

 = 0 
 

 For γ = 30°, 2 reaches    
a maximum and this 
represents the ‘most 
collective’ shape 
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Angular Momentum Coupling 
 Provided that the collective rotation is slow relative to 

the single-particle motion (adiabatic condition), the 
nuclear Hamiltonian can be separated into intrinsic and 
rotational parts:  

        H = Hint + Hrot   with eigenvalues    Ψ = ΨintΨrot 

 

 The intrinsic motion has angular momentum J, which is 
not a conserved quantity. It couples to the collective 
rotation R to give total spin:  

         I = R + J 

 

 The total spin I is a constant of the motion together 
with its projection M 
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Various Spin Projections 



 The intrinsic wavefunction can be characterised by the  
K projection. The three variables I2, M  and K completely 
specify the state of motion The eigenfunctions are given  

    by:  
              Ψrot = |IMK  = √[(2I +1)/8π2] DIMK (θ,φ,ψ)  
     
    where the functions DIMK are ‘rotation matrices’ 
 
 Note:       Î2 DIMK = I(I+1)ħ2 DIMK   ;   ÎZ DIMK = Kħ DIMK  

                    
                    Î± DIMK = √[I(I+1) – K(K 1)]ħ DIMK 1 
 
 The rotational energy is: 

 
       (1/2x)(Î2 – Îz

2) Ψrot   i.e.    Erot = (ħ2/2x)[I(I+1) – K2] 
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Rotation Matrices 
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Signature Quantum Number ‘r’ 
 For K = 0, the DIMK functions reduce to spherical 

harmonics YIM and the nuclear wavefunction is:    
                   
                      Ψr,IMK=0 = (1/√2) Ψr,K=0 YIM 

 
 The quantum number r is the ‘signature’, related to the 

invariance of the system when rotated 180° about an axis 
perpendicular to the symmetry axis (z): operator R(π) 
 

 A second rotation by 180° brings the system back to its 
original orientation. Hence:  
 

                     R2(π) Ψr,IMK = r2 Ψr,IMK = Ψr,IMK  
 
 The allowed values of r are: (-1)I 
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Bands of Good Signature 

 For K = 0, we may classify rotational bands in terms of 
the signature quantum number 

 

 For r = +1, the allowed spins are: 

                       I = 0, 2, 4,… 

 

 For r = -1, the allowed spins are: 

                       I = 1, 3, 5,… 

 

 Hence for each signature we obtain a rotational band 
with the energy levels separated by 2ħ 
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 For K ≠ 0, the total nuclear wavefunction takes the 
antisymmetrised form in order to satisfy the rotation 
(reflection) symmetry:  
 

           ΨIMK = √[(2I+1)/16π2] {ΨK DIMK + (-1)I+K Ψ-K DIM-K }  
 
    where Ψ-K corresponds to a projection of the spin  –K and 

is obtained by the operation R(π) ΨK  
 
 The consequence of R(π) invariance for K ≠ 0 is that the 

intrinsic states ΨK and Ψ-K, with eigenvalues ±K of Jz, are 
degenerate and constitute only a single sequence of 
states with spins:  

             I = K, K+1, K+2,…  
   i.e. states with alternating signature 

Rotational Bands with K ≠ 0 
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Particle-Rotor Coupling 
 For an axially symmetric deformed rotor:  

 
     Hrot = (ħ2/20) R2  = (ħ2/20) [I – J]2  
 

                                  = (ħ2/20) [I.I + J.J -2I.J] 
 
    where the I.J couples the degrees of freedom of the 

valence particles to the rotational motion and is  
analogous to the classical Coriolis and centrifugal forces 

 
 Now consider J to consist of a single particle  
    (J j) coupled to an even-even core 
 
        Hrot = (ħ2/20) [(I2 – Iz

2) + (j2 – jz
2) – (I+j- + I-j+)] 

 

    The final term couples intrinsic and rotational states 
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Particle-Rotor Coupling Schemes 

  (a) shows the strong-coupling limit or deformation- 
     aligned (DAL) coupling scheme 
  (b) shows the weak-coupling limit or rotation-aligned  
     (RAL) coupling scheme 
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Strong Coupling (DAL) 
 This limit is recognised when the level splitting of the 

deformed shell-model single-particle energies for 
different Ω values is large compared with the Coriolis 
perturbation, i.e. large deformation or small Coriolis 
matrix elements (low j, high Ω) 
 

 The angular momentum vector j precesses around the 
deformation axis and K is approximately a good quantum 
number 
 

 The energy spectrum is given by the set of levels:  
 

                       Erot = (ħ2/20) [I(I+1) – K2] 
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Decoupling Limit (RAL) 
 For weakly deformed nuclei, or fast enough rotation, the 

Coriolis force may be so strong that the coupling of the 
valence nucleon to the deformed core is negligible 

 

 The Coriolis force tends to align the nucleonic angular 
momentum j with that of the rotational angular 
momentum R 

 

 In this limit, the rotation band has spins:  

         I = j, j+2, j+4,… 

 

 The energies are:      Erot = (ħ2/20) (I - jx) (I – jx +1) 
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 The rotational energy of a K = ½ band is:  
 

               E(I) = (ħ2/20) [I(I+1) + a(-1)I+½(I+½)]  
 
    where a is the decoupling parameter 

K = ½ Bands in Odd-A Nuclei 

 Bands can mix if ΔK = ±1 

 

 For K = ½ bands there is a 
diagonal matrix element of  
the form:  K=½|j+| K=-½  

    where j+ = jx + ijy which 
perturbs the energy 
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High K (Iz) Bands 
 If we have many paired 

nucleons outside the closed 
shell in the ground state 
then alignment with the x-
axis becomes difficult 
because the valence 
nucleons lie closer to the  
z-axis, i.e. they have high  
Ω values 

 

 The sum K of these 
projections onto the 
deformation (z) axis is now 
a good quantum number 

K = Iz = jz = Ω 
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K Forbidden Transitions 
 It is difficult for rotational bands with high K values to 

decay to bands with smaller K since the nucleus has to 
change the orientation of its angular momentum.  
 

 For example, the Kπ = 8- band head in 178Hf is isomeric 
with a lifetime of 4 s.  This is much longer than the 
lifetimes of the rotational states built on it. 
 

 The Kπ = 8- band head is formed by breaking a pair of 
protons and placing them in the ‘Nilsson configurations’: 
 

         Ω [N n3 Λ] = 7/2 [4 0 4] and 9/2 [5 1 4] 
 
 In this case: K = 7/2 + 9/2 = 8 and π = (-1)N(1).(-1)N(2) = -1 



11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul 24 

K Isomers in 178Hf 
 A low lying state with 

spin I = 16 and K = 16 in 
178Hf is isomeric with a 
half life of 31 years ! 

 

 It is yrast (lowest state 
for a given spin) and is 
‘trapped’ since it must 
change K by 8 units in its 
decay 



11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul 25 

K Forbiddenness 
 Strictly, in the decay of a high-K band-head, K can only 

change by an amount up to the multipolarity λ of the 
transition 
 

 The ‘degree of K forbiddenness’ is:  
             ν = |ΔK| - λ 
 
 The ‘hindrance factor’ is:  
             f = FW = T1/2

γ / T1/2
W  

    where T1/2
γ is the partial γ-ray half-life and T1/2

W is the 
theoretical Weisskopf estimate 

 
 The ‘reduced hindrance factor’ is:  
             fν = f1/ν = [ T1/2

γ / T1/2
W ]1/ν 
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Hindrance Factors 
 The solid line shows 

the dependence of FW 

on ΔK for some E1 
transitions according 
to an empirical rule:   

      log FW = 2{|ΔK| - λ}  

                 = 2ν 

 

 i.e. FW values increase 
approximately by a 
factor of 100 per 
degree of K 
forbiddenness 



Nuclear Wobbling 

 This type of rotation is predicted to only occur in 
triaxially deformed nuclei 

 

 The nucleus rotates around the principal axis having the 
largest moment of inertia and this axis executes 
harmonic oscillations about the space-fixed angular 
momentum vector 

 

 Its analogue in classic mechanics is an asymmetric 
spinning top 

 

 Precession of the Earth 
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 Wobbling is a fundamental mode due to triaxiality which 
occurs when the axis of collective rotation  does not 
coincide with one of the principal axes 
 

 For a deformed rotor the Hamiltonian is:  
 

            Hrot = (ħ2/2x) Ix
2 + (ħ2/2y) Iy

2 + (ħ2/2z) Iz
2 

 
 For a well-deformed but triaxial nucleus with x » y ≠ z 

the energy of the wobbling rotor is: 
  
            E(I,nW) = (ħ2/2x) I(I+1) + ħωW(I) (nW + ½)  
 
   where nW is the number of wobbling phonons and ωW is  
   the wobbling frequency 

Wobbling Motion and Triaxiality 
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Wobbling Frequency 

 The wobbling frequency is related to the rotational 
frequency as:  

 

           ωW = ωrot√[ (x - y)(x - z) / (y z) ]  

with  

           ωrot = ħ I / x 

 

 Note for an axially symmetric prolate nucleus, z goes to 
zero and ωW  , i.e. there is no wobbling motion 

 

 A family of wobbling bands is expected for nW = 0, 1, 2,… 
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Wobbling Motion 
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Wobbling Bands in 165Lu 

 A family of wobbling 
bands is expected to 
show very similar 
internal structure 

 

 TSD (Triaxial 
SuperDeformed) bands 
1, 2 and 3 in 165Lu 
represent bands with 0, 
1 and 2 wobbling 
phonons, respectively 
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Electromagnetic Properties 
 A characteristic signature 

of wobbling motion is the 
occurrence of ΔI = ±1 
interband transitions with 
unusually large B(E2)out 

values that compete with 
the strong ΔI = 2 inband 
transitions, B(E2)in 

 

  ΔnW = 2 transitions are 
forbidden 

 Measured multipole mixing ratios for the interband  
ΔI = 1 transitions in 165Lu show them to be ~90% E2 
and only ~10% M1 ! 



105Pd: Transverse Wobbler 

 Precise measurements of angular distributions and linear 
polarisations in 105Pd have also pointed to ΔI = 1 
interlinking transitions with predominantly E2 (non-
stretched) character 

 

 The angular momentum of the odd neutron (h11/2)  is 
perpendicular to the wobbling axis 
 

 Hence the name transverse wobbler! 
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